

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0728 of 16 December 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Rebar connection with injection system FIS V Plus

Systems for post-installed rebar connections with mortar

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

24 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

ETA-20/0728 issued on 13 November 2020

European Technical Assessment ETA-20/0728 English translation prepared by DIBt

Page 2 of 24 | 16 December 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0728 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with injection system FIS V Plus" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 28 mm or the fischer rebar anchor FRA or FRA HCR of sizes M12 to M24 according to Annex A and injection mortar FIS V Plus or FIS V Plus Low Speed are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1 and C2
Characteristic resistance under seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 2 and C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

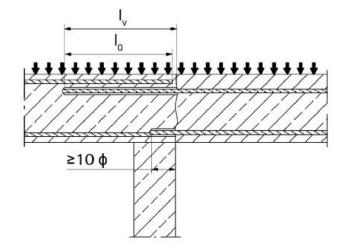
European Technical Assessment ETA-20/0728 English translation prepared by DIBt

Page 4 of 24 | 16 December 2022

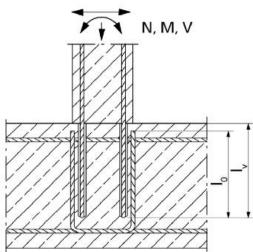
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

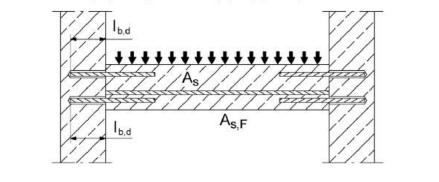
Issued in Berlin on 16 December 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Installation conditions and application examples reinforcing bars, part 1


Figure A1.1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A1.2:

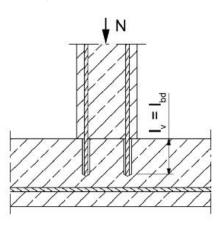
Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

End anchoring of slabs or beams (e.g. designed as simply supported)

Figures not to scale

Rebar connection with injection system FIS V Plus

Product description


Installation conditions and application examples reinforcing bars, part 1

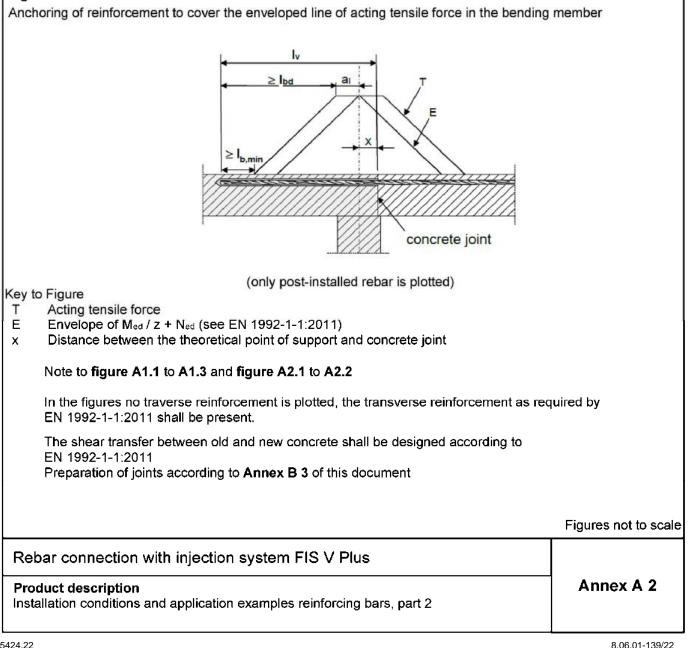

Installation conditions and application examples reinforcing bars, part 2

Figure A2.1:

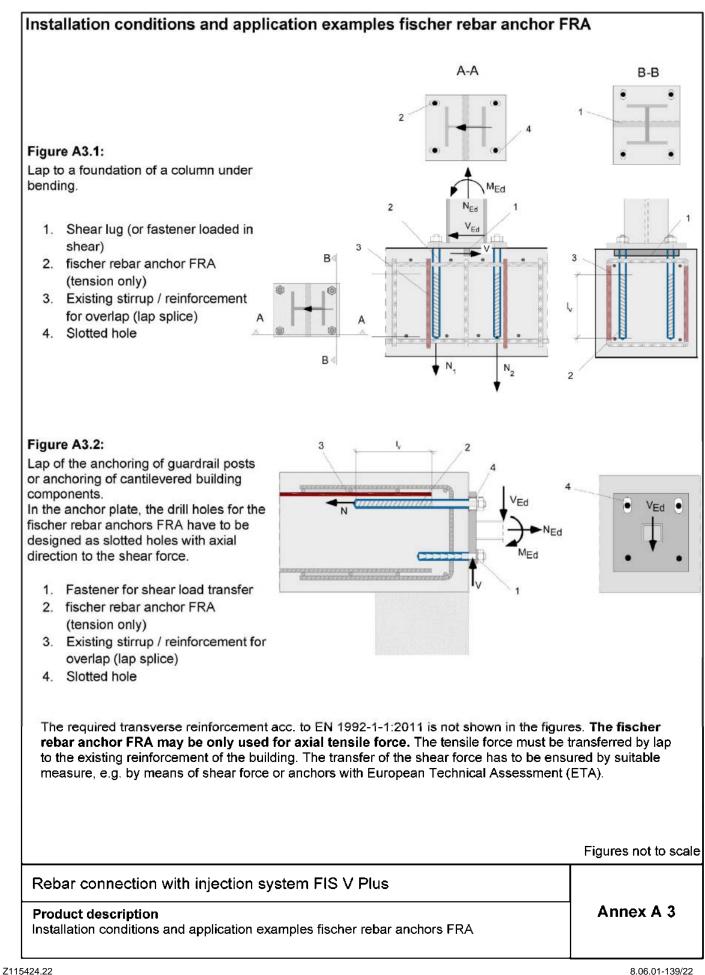
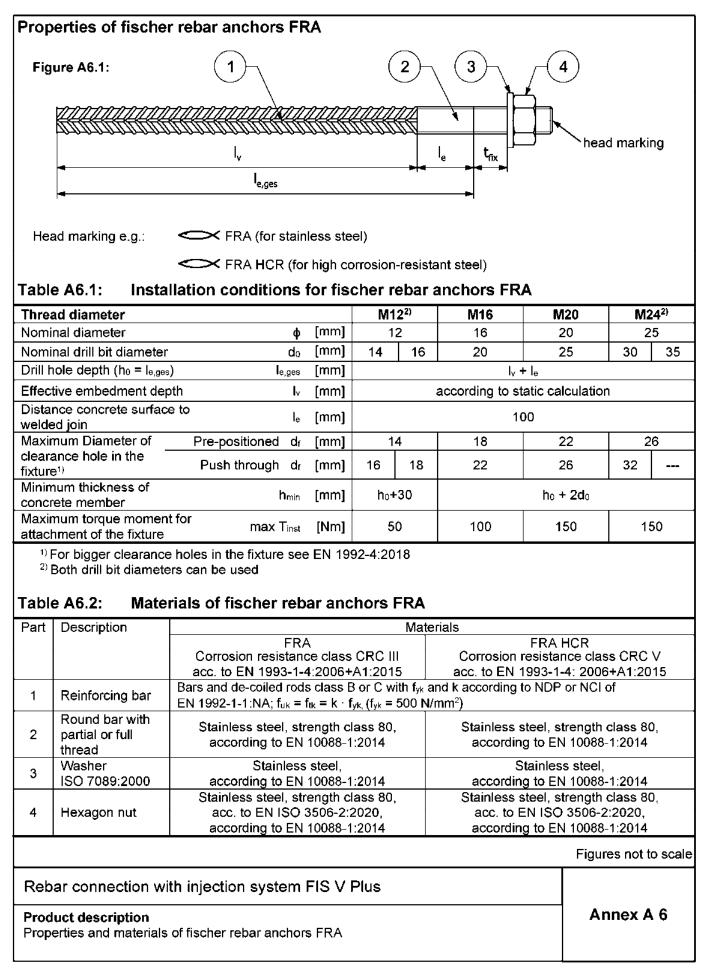

Rebar connection for stressed primarily in compression

Figure A2.2:



Overview system components	
Injection cartridge (shuttle cartridge) FIS V Plus with sealing cap; Sizes: 360 ml, 825 m	l
Imprint: fischer FIS V Plus or FIS VS Plus Low Speed, processing shelf-life, hazard code, curing times and processing times (dependi temperature), piston travel scale (optional), size, volume	ng on
Injection cartridge (coaxial cartridge) FIS V Plus with sealing cap; Sizes: 300 ml, 380 m	ıl, 400 ml, 410 ml
Imprint: fischer FIS FIS V Plus or FIS VS Plus Low Speed, proce shelf-life, hazard code, curing times and processing times (depen temperature), piston travel scale (optional), size, volume	ding on
Static mixer FIS MR Plus for injection cartridges up to 410 ml	7 h[]
Static mixer FIS JMR for injection cartridges 825 ml	
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS JMR	
Reinforcing bar (rebar) Sizes:	ing setting depth
fischer rebar anchor FRA / FRA HCR Sizes: M12, M16, M20, M24	
Blow out pump AB G Compressed-air cleaning tool ABP with fischer cor	npressed-air nozzle
	Figures not to scale
Rebar connection with injection system FIS V Plus	
Product description Overview system components; Injection mortar, static mixer, injection adapter, reinforcing bar, fischer rebar anchor FRA, cleaning tools	Annex A 4

Properties of reinforcing	bar	rs (r	ebar))									
	Dai		o Dui j	,									
Figure A5.1:													
 The minimum value of re The maximum outer reb The nominal diame 	ar dia	amet	ter ove	r th	ie ribs sh	all be	•:		2011				
 φ: Nominal diamet 													
Table A5.1: Installatio	n co	ondi	itions	s fo	or rebar	S							
Nominal diameter of the bar		φ	8 ¹⁾		10 ¹⁾	12	21)	14	16	20)	25 ¹⁾	28
Nominal drill hole diameter d			10 ⁻	12	12 14	14	16	18	20	2	5	30 35	35
Drill hole depth h Effective embedment depth		mm]							= l _v c calcula	tion			
Minimum thickness of				1	v + 30		acc	. เอ รเลเ					
concrete member	าเก				≥ 100)					v + 2d	2		
¹⁾ Both drill hole diameters o		e us	ed										
Table A5.2: Materials	of re	ebaı	rs										
	of re	ebai		orc	ing bar	reba	(r)						
Designation	of re	ebai	Reinf		:ing bar (I de-coile	•		ss B or C) with				
	of re	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/	NA		
Designation Reinforcing bar	of re	ebai	Reinf Bars a	and d k	l de-coile according	d rod	s clas			2-1-1/	NA		
Designation Reinforcing bar	of re	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I	NA		
Designation Reinforcing bar	ofre	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I	NA		
Designation Reinforcing bar	of re	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I	NA		
Designation Reinforcing bar	ofre	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/	NA		
Designation Reinforcing bar	ofre	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I	NA		
Designation Reinforcing bar	of re	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I	NA		
Designation Reinforcing bar	of re	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I	NA		
Designation Reinforcing bar	ofre	ebaı	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I	NA		
Designation Reinforcing bar	ofre	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I	NA		
Designation Reinforcing bar	ofre	ebai	Reinf Bars a f _{yk} and	and d k	l de-coile according	d rod	s clas			2-1-1/I		igures not t	o scale
Designation Reinforcing bar			Reinf Bars a f _{yk} and f _{uk} = ft	and d k tk =	l de-coile according k · f _{yk}	d rod g to I	s clas			2-1-1/I		igures not f	o scale
Designation Reinforcing bar EN 1992-1-1:2011, Annex C Rebar connection with inj			Reinf Bars a f _{yk} and f _{uk} = ft	and d k tk =	l de-coile according k · f _{yk}	d rod g to I	s clas			2-1-1/I		igures not f	
Designation Reinforcing bar EN 1992-1-1:2011, Annex C	ectic	on s	Reinf Bars a fyk and fuk = ft	n F	I de-coile according k · fyk	d rod g to I	s clas			2-1-1/			

Specifications		-			
Table B1.1:	Overview use	e and performan	ce categories		
Anchorages subject	ct to			Plus with	
		Reinfor	cing bar	fischer reb	ar anchor FRA
				mmmm	
Hammer drilling or compressed air drilling with standard drill bit	B+000000000000000000000000000000000000		all s	izes	
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert", Bosch "Speed Clean", Hilti "TE-CD, TE-YD")	Ē			it diameter (d₀) o 35 mm	
Use category I1	dry or wet concrete		all s	izes	
Characteristic resistance under static and quasi static loading, in	uncracked concrete cracked concrete	all sizes	Tables: C1.1 C1.2 C1.3	all sizes	Tables: C1.1 C1.2 C1.3 C2.1 C2.2
Characteristic resistance under seismic loading			_1)		1)
Installation directio	n	D3 (down	ward and horizontal	and upwards (e.g.	overhead))
Installation temper	ature		$T_{i,min} = 0 \ ^{\circ}C$ to	Ti,max = +40 °C	
Service temperature	Temperature range	-40 °C t	o +80 °C		temperature +80 °C; emperature +50 °C)
Resistance to fire		all sizes	Annex C 3	all sizes	Table C2.3
¹⁾ No performar	nce assessed				
Rebar connecti Intended use Specifications par	-	ion system FIS	√ Plus		Annex B 1

Specifications of intended use part 2

Anchorages subject to:

- Static and quasi-static loading: reinforcing bar (rebar) size 8 mm to 28 mm; FRA M12 to M24
- Resistance to fire: reinforcing bar (rebar) size 8 mm to 28 mm; FRA M12 to M24

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Concrete strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- · Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1 :2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Use conditions (Environmental conditions) for fischer rebar anchors FRA

 For all conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 6 Table A6.2.

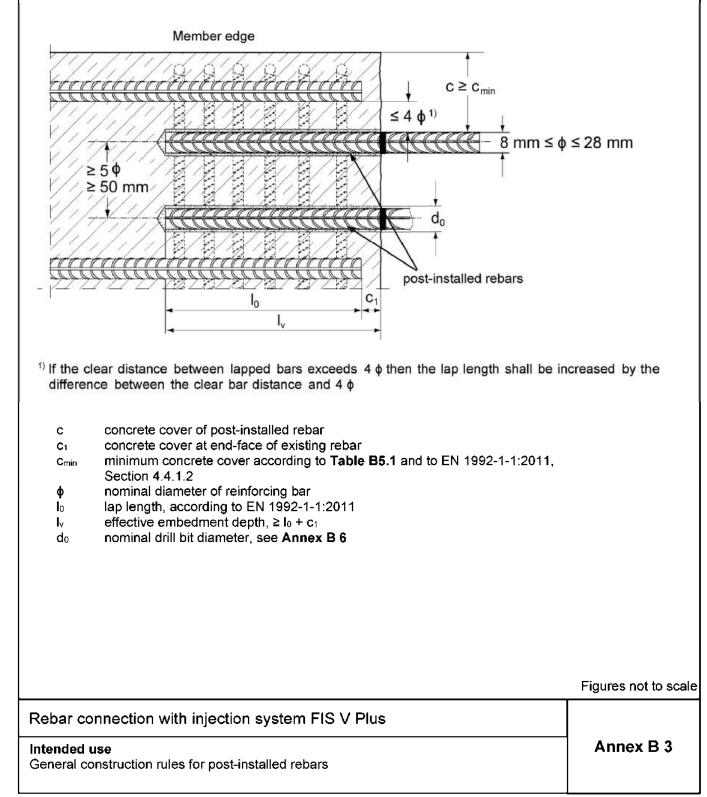
Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2011; EN 1992-1-2:2011 and Annex B 3 and B 4.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- The installation of post-installed rebar respectively fischer rebar anchor FRA shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

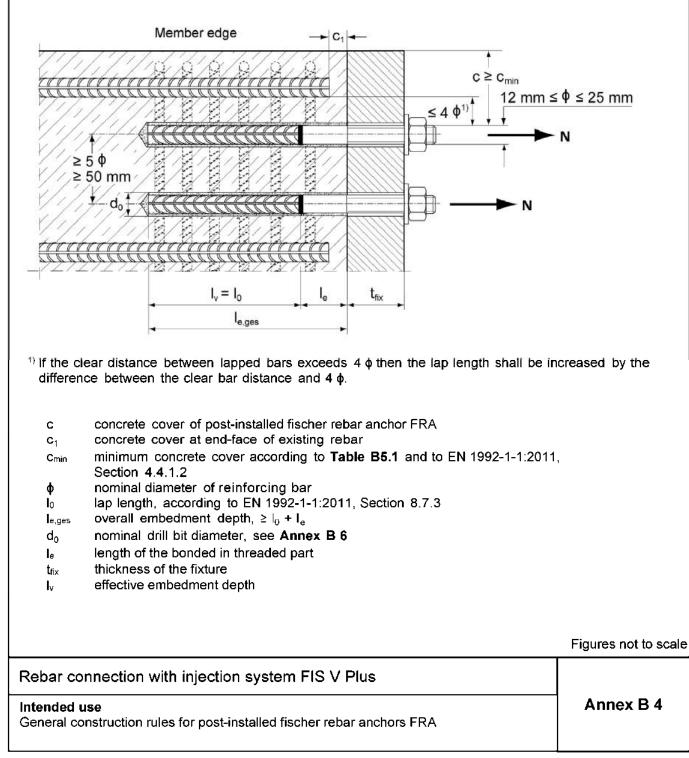
Rebar connection with injection system FIS V Plus


Intended use Specifications part 2 Annex B 2

General construction rules for post-installed rebars

Figure B3.1:

- · Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2011.
- · The joints for concreting must be roughened to at least such an extent that aggregate protrude.



General construction rules for post-installed fischer rebar anchors FRA

Figure B4.1:

- · Only tension forces in the axis of the fischer rebar anchor FRA may be transmitted.
- · The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with a European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as slotted holes with the axis in the direction of the shear force.

	rilling to											
					N	linimur	n concr	ete cov	er C _{min}			
inoa			Without o	drilling a	iid (mm			With d	Irilling a	aid [mm]		
illing d drill	< 2	25	30 mm	+ 0,06 l	v ≥ 2 φ	30 m	m + 0,0	2 I _v ≥ 2	¢ 7%	<u>7777</u>		
drill bit	≥2	25	40 mm	+ 0,06 I	v ≥ 2 ¢	40 m	m + 0,0	2 I _v ≥ 2	¢ 🏹	//]
d air	< 2	25	50 m	m + 0,0)8 Iv	50	mm +	0,02 l _v			Drillin	na ai
	≥2	25	60 mm	+ 0,08 I	v ≥ 2 ¢	60 m	m + 0,0	2 I _v ≥ 2	ф		Dillin	iy ai
he mini	mum con	crete cove	r as spec	ified in	EN 199						nent	
	•		al dispen	ser	Ac	cu and	nneum	atic	Ac	cu and r	neuma	tic
re	bar	1776716				ispense	er (sma	II)				
anch	or FRA			< 5	00 ml	Cartri	dge siz	e 		> 500	ml	
thre	ad [-]		Ιv			nm]			l _{v,r}	_{max} / l _{e,ge}	_{s,max} [mr	n]
-						10	000					
FRA H	CR M12		1000			12	200			18	າດ	
FRA FRA H	M16 CR M16					15	500			,		
FRA H	CR M20		700			13	300					
										20	00	
-			700			7	00					
		n <mark>s for use</mark> d₀		mixei	witho 12	ut an 14	exten 16	sion t	u be 20	25	30	35
ith haby	F Using —	IS MR Plu	s	≤ (90	≤ 120	≤ 140	≤ 150	≤ 160		≤ 210	
(an 110 wy	F									≤ 220	≤ 2	
	d drill drill bit d air nex B 3 he mini e: C fis re anch fis re anch FRA H FRA H FRA H FRA H FRA H FRA H FRA H	thod of reinf bar ∳ illing < 2 d drill drill bit ≥ 2 d air <2 nex B 3, figure B he minimum cond the minimum cond thread [-] FRA M12 FRA HCR M12 FRA HCR M12 FRA HCR M12 FRA HCR M16 FRA HCR M16 FRA HCR M20 FRA HCR M20 FRA HCR M24 FRA HCR M24	bar ϕ [mm] illing < 25	thodof reinforcing bar ϕ [mm]Without of without of 30 mmilling d drill< 25	thodof reinforcing bar ϕ [mm]Without drilling ailling d drill< 25	thodof reinforcing bar ϕ [mm]Without drilling aid [mm]illing d drill< 25	thodof reinforcing bar ϕ [mm]Without drilling aid [mm]illing d drill< 25	thodof reinforcing bar ϕ [mm]Without drilling aid [mm]illing d drill< 25	thodof reinforcing bar ϕ [mm]Without drilling aid [mm]With orilling d drill < 25 $30 \text{ mm} + 0,06 \text{ l}_v \ge 2 \phi$ $30 \text{ mm} + 0,02 \text{ l}_v \ge 2$ d drill ≥ 25 $40 \text{ mm} + 0,06 \text{ l}_v \ge 2 \phi$ $40 \text{ mm} + 0,02 \text{ l}_v \ge 2$ d air < 25 $50 \text{ mm} + 0,08 \text{ l}_v \ge 2 \phi$ $60 \text{ mm} + 0,02 \text{ l}_v \ge 2$ d air < 25 $60 \text{ mm} + 0,08 \text{ l}_v \ge 2 \phi$ $60 \text{ mm} + 0,02 \text{ l}_v \ge 2$ nex B 3, figure B3.1 and Annex B 4, figure B4.1he minimum concrete cover as specified in EN 1992-1-1:2011 must be othe minimum concrete cover as specified in EN 1992-1-1:2011 must be othe depth $ _{v,max}$ fischer rebarManual dispenserAccu and pneumatic dispenser (small)anchor FRA $$	thodof reinforcing bar ϕ [mm]Without drilling aid [mm]With drilling aid (mm]illing d drill ≥ 25 $30 \text{ mm} + 0,06 \text{ l}_{v} \geq 2 \phi$ $30 \text{ mm} + 0,02 \text{ l}_{v} \geq 2 \phi$ d drill ≥ 25 $40 \text{ mm} + 0,06 \text{ l}_{v} \geq 2 \phi$ $40 \text{ mm} + 0,02 \text{ l}_{v} \geq 2 \phi$ d air ≤ 25 $50 \text{ mm} + 0,08 \text{ l}_{v} \geq 2 \phi$ $60 \text{ mm} + 0,02 \text{ l}_{v} \geq 2 \phi$ d air ≤ 25 $60 \text{ mm} + 0,08 \text{ l}_{v} \geq 2 \phi$ $60 \text{ mm} + 0,02 \text{ l}_{v} \geq 2 \phi$ et al. ≥ 25 $60 \text{ mm} + 0,08 \text{ l}_{v} \geq 2 \phi$ $60 \text{ mm} + 0,02 \text{ l}_{v} \geq 2 \phi$ nex B 3, figure B3.1 and Annex B 4, figure B4.1he minimum concrete cover as specified in EN 1992-1-1:2011 must be observedthe minimum concrete cover as specified in EN 1992-1-1:2011 must be observed $Cartridge size$ thread [-]Image: Image and the maximum end depth Integration of the maximum end depth Integration	thodof reinforcing bar ϕ [mm]Without drilling aid [mm]With drilling aid [mm]illing d drill< 25	thedof reinforcing bar ϕ [mm]Without drilling aid [mm]With drilling aid [mm]illing d drill< 25

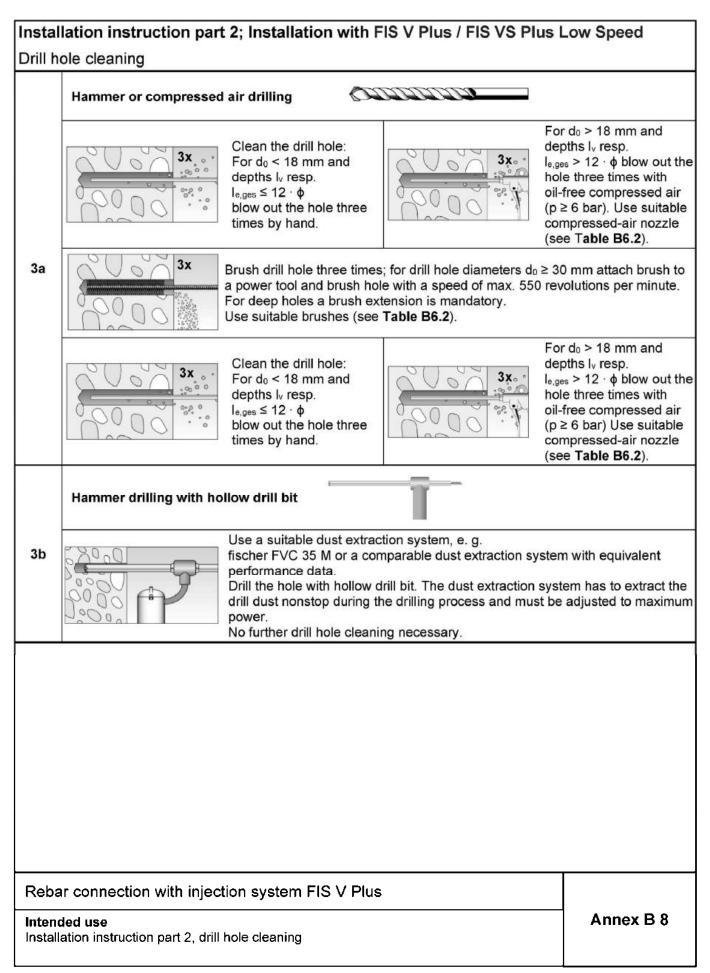
Temperatu			vorking time ¹⁾			curing time ²)
anchorage [°C]		FIS V Plus	FIS VS Plus Low Speed	FI	S V Plus	FIS V	/S Plus Speed
0 to	5 ³⁾	13 min			3 h	(3 h
>5 to	10 ⁻³⁾	9 min	20 min		90 min	:	3 h
> 10 to	20	5 min	10 min		60 min		2 h
> 20 to	30	4 min	6 min		45 min	60) min
> 30 to	40 4)	2 min	4 min		35 min	60	min
able B6.	2: Installa mortar		drilling and clear	ning the boi	re hole and i	iniection o	f tha
	mortar	•		Ĵ			n ine
-	mortar		Drilling and	•		- Inje	ction
reinforcing bars (rebar)	fischer reba anchor FR/	Ir Nominal d	rill Diameter of	•	Diameter of fischer compressed-	lnje Diameter of extension	ction Injection
bars (rebar)	fischer reba anchor FR/	Nominal d bit diamet	rill Diameter of cutting edge	cleaning Steel brush diameter	Diameter of fischer compressed- air nozzle	Inje Diameter of extension tube	iction Injection adapter
bars (rebar) ¢ [mm]	fischer reba	nr A Nominal d bit diamet	rill Diameter of er cutting edge d _{cut} [mm]	cleaning Steel brush diameter d₀ [mm]	Diameter of fischer compressed-	lnje Diameter of extension	iction Injection adapter
bars (rebar)	fischer reba anchor FR/	Nominal d bit diamet	rill Diameter of cutting edge	cleaning Steel brush diameter	Diameter of fischer compressed- air nozzle	Inje Diameter of extension tube	ction Injection adapter [colour]
bars (rebar) φ [mm] 8 ¹⁾	fischer reba anchor FR/	n Nominal d bit diamet n d₀ [mm] 10 12 12	rill Diameter of cutting edge $d_{cut} [mm]$ $\leq 10,50$ $\leq 12,50$ $\leq 12,50$	cleaning Steel brush diameter d _b [mm] 11,0 12,5 12,5	Diameter of fischer compressed- air nozzle	Inje Diameter of extension tube [mm]	iction Injection adapter
bars (rebar) ¢ [mm]	fischer reba anchor FR/ Designation 	nr A n d₀ [mm] 10 12 12 14	rill Diameter of cutting edge $d_{cut} [mm]$ $\leq 10,50$ $\leq 12,50$ $\leq 12,50$ $\leq 14,50$	cleaning Steel brush diameter d _b [mm] 11,0 12,5 12,5 15	Diameter of fischer compressed- air nozzle [mm] 	Inje Diameter of extension tube	ction Injection adapter [colour]
bars (rebar) • [mm] 8 ¹⁾	fischer reba anchor FR/ Designation FRA M12 ¹	n d₀ [mm] 10 10 12 12 14 14	rill Diameter of cutting edge d_{cut} [mm] $\leq 10,50$ $\leq 12,50$ $\leq 12,50$ $\leq 14,50$ $\leq 14,50$	cleaning Steel brush diameter d _b [mm] 11,0 12,5 12,5 15 15	Diameter of fischer compressed- air nozzle [mm] 11	Inje Diameter of extension tube [mm]	ction Injection adapter [colour] nature blue
bars (rebar) • [mm] 8 ¹⁾ 10 ¹⁾	fischer reba anchor FR/ Designation 	n d₀ [mm] 10 10 12 12 14 14	rill Diameter of cutting edge d_{cut} [mm] $\leq 10,50$ $\leq 12,50$ $\leq 12,50$ $\leq 14,50$ $\leq 14,50$ $\leq 16,50$	cleaning Steel brush diameter d _b [mm] 11,0 12,5 12,5 15	Diameter of fischer compressed- air nozzle [mm] 	Inje Diameter of extension tube [mm]	ction Injection adapter [colour] nature blue red
bars (rebar)	fischer reba anchor FR/ Designation FRA M12 ¹	Ir A Nominal d bit diamet n d₀ [mm] 10 12 12 12 14 14 12 14 14 12 14 14 12 14 14 18 20	rill Diameter of cutting edge d_{cut} [mm] $\leq 10,50$ $\leq 12,50$ $\leq 12,50$ $\leq 14,50$ $\leq 14,50$	cleaning Steel brush diameter d _b [mm] 11,0 12,5 12,5 15 15 17	Diameter of fischer compressed- air nozzle [mm] 11	Inje Diameter of extension tube [mm]	ction Injection adapter [colour] nature blue
bars (rebar)	fischer reba anchor FR/ Designation FRA M12 ¹ FRA HCR M1 FRA M16	$ \begin{array}{c c} $	rill Diameter of cutting edge d_{cut} [mm] $\leq 10,50$ $\leq 12,50$ $\leq 12,50$ $\leq 14,50$ $\leq 14,50$ $\leq 14,50$ $\leq 16,50$ $\leq 18,50$	cleaning Steel brush diameter d _b [mm] 11,0 12,5 12,5 15 15 15 15 17 19 21,5 26,5	Diameter of fischer compressed- air nozzle [mm] 11	Inje Diameter of extension tube [mm]	ction Injection adapte [colour] nature blue red yellow
bars (rebar) ϕ [mm] $8^{1)}$ $10^{1)}$ $12^{1)}$ 14 16 20	fischer reba anchor FR/ Designation FRA M12 ¹ FRA HCR M12 FRA M16 FRA M20 FRA HCR M FRA M24 FRA M24	$ \begin{array}{c c} $	Diameter of cutting edge d_{cut} [mm] $\leq 10,50$ $\leq 12,50$ $\leq 12,50$ $\leq 14,50$ $\leq 14,50$ $\leq 14,50$ $\leq 14,50$ $\leq 16,50$ $\leq 20,55$ $\leq 25,55$ $\leq 30,55$	cleaning Steel brush diameter d _b [mm] 11,0 12,5 12,5 15 15 15 15 17 19 21,5 26,5 32	Diameter of fischer compressed- air nozzle [mm] 11 15 15	Inje Diameter of extension tube [mm] 9	ction Injection adapte [colour] nature blue red yellow green black grey
(rebar) (rebar) (rebar) (10 ¹⁾ 10 ¹⁾ 12 ¹⁾ 14 16	fischer reba anchor FR/ Designation FRA M12 ¹ FRA HCR M12 FRA M16 FRA HCR M16 FRA HCR M20 FRA HCR M	$ \begin{array}{c c} $	rill erDiameter of cutting edge d_{cut} [mm] $\leq 10,50$ $\leq 12,50$ $\leq 12,50$ $\leq 14,50$ $\leq 14,50$ $\leq 16,50$ $\leq 18,50$ $\leq 20,55$ $\leq 25,55$	cleaning Steel brush diameter d _b [mm] 11,0 12,5 12,5 15 15 15 15 17 19 21,5 26,5	Diameter of fischer compressed- air nozzle [mm] 11	Inje Diameter of extension tube [mm] 9	ection Injectio adapte [colour nature blue red yellow green black

¹⁾ Both drill bit diameters can be used.

Rebar connection with injection system FIS V Plus

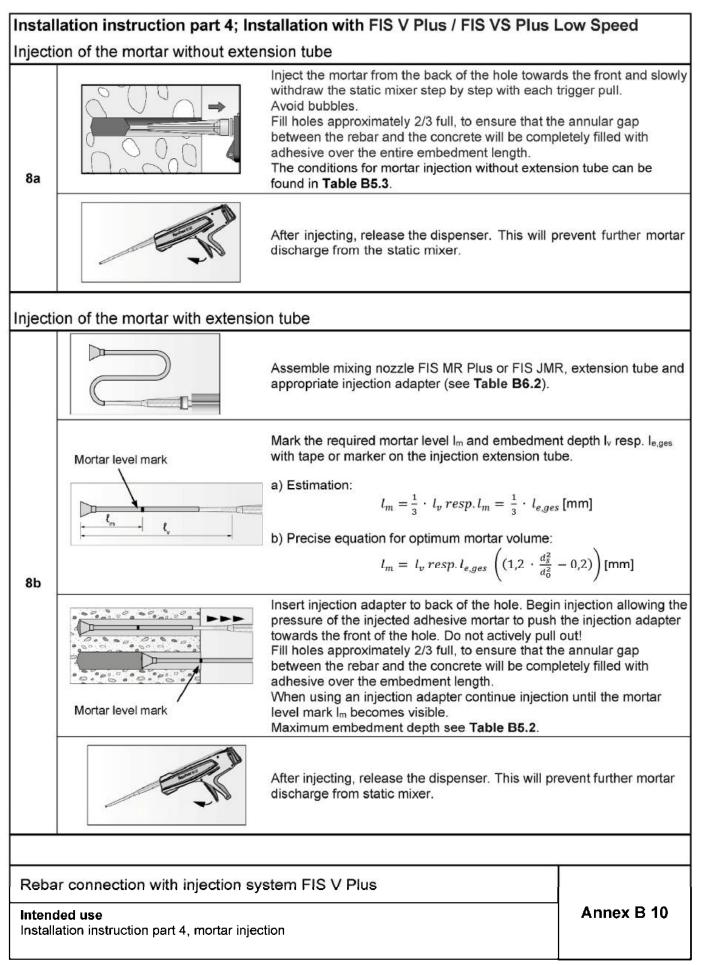
Intended use

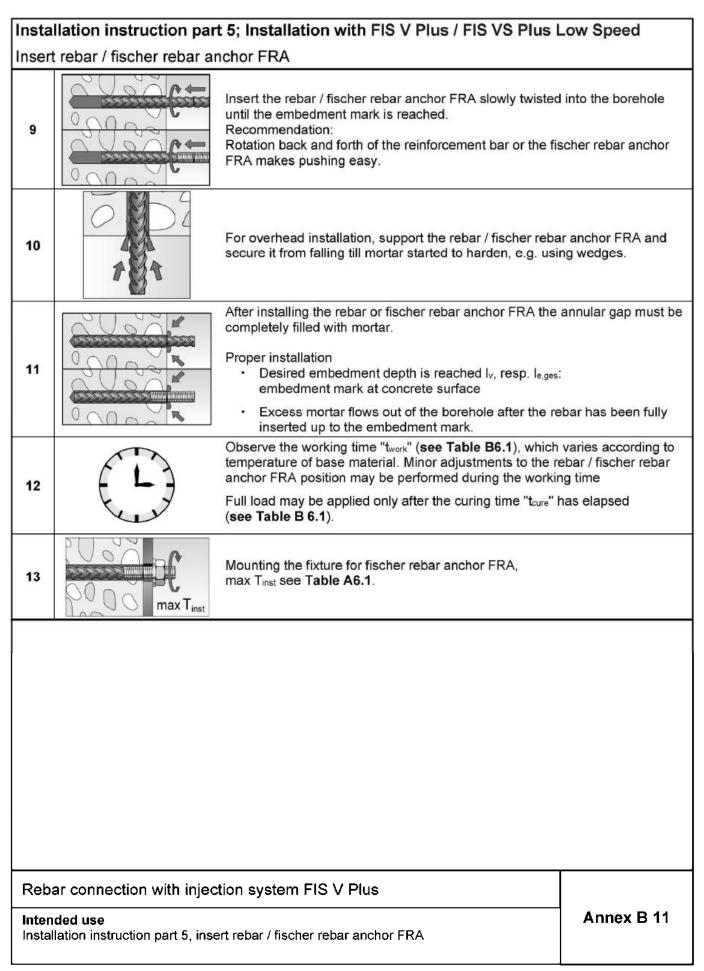
Working times and curing times;


Installation tools for drilling and cleaning the bore hole and injection of the mortar

Annex B 6

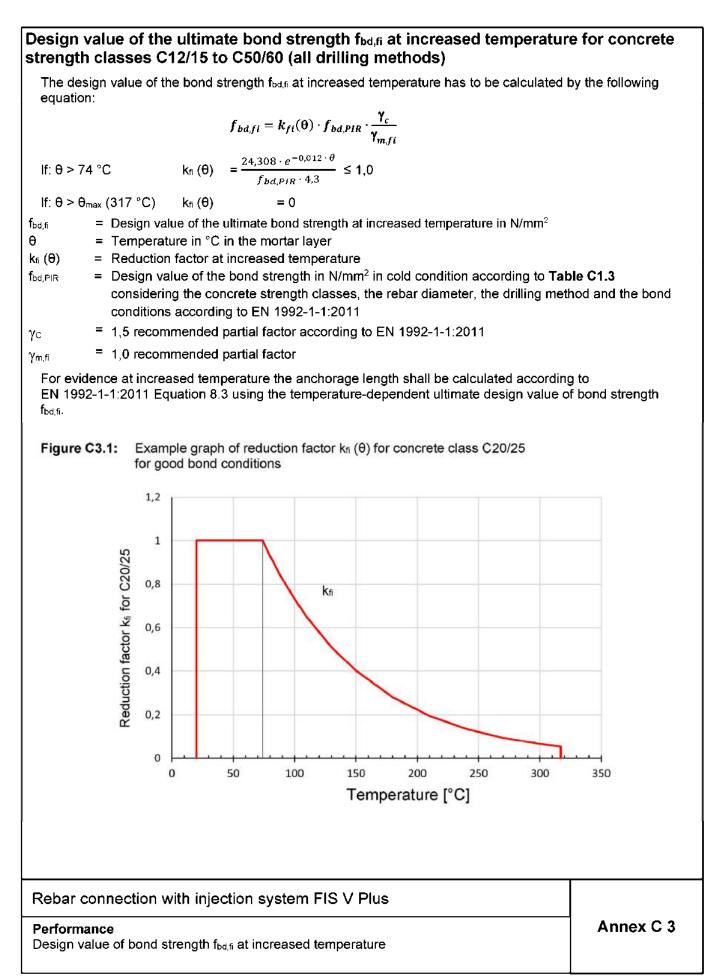
Safety	y regulations			
		Wear well-fitting pro mortar FIS V Plus /	Data Sheet (SDS) before use for proper a otective goggles and protective gloves wh FIS VS Plus Low Speed. the instructions for use provided with eac	en working with
Hole d Note	drilling	carbonized concrete	n with FIS V Plus / FIS VS Plus L ; clean contact areas (see Annex B 2) filled with mortar.	ow Speed
	Hammer drilling or co	mpressed air drillin	ng	
1a	F3355555	u 🐻	Drill the hole to the required embedme hammer drill with carbide drill bit set ir mode or a pneumatic drill. Drill bit sizes see Table B6.2 .	
1b	Hammer drilling with	th hollow drill bit	Drill the hole to the required embedme hammer drill with hollow drill bit in rota Dust extraction conditions see drill hol Annex B 8 . Drill bit sizes see Table B6.2 .	tion hammer mode
		C _{drill}	Measure and control concrete cover c ($c_{drill} = c + \emptyset / 2$) Drill parallel to surface edge and to ex Where applicable use drilling aid.	
2			For holes I _V > 20 cm use drilling aid. Three different options can be conside A) drilling aid B) Slat or spirit level C) Visual check	ered:
			Minimum concrete cover cmin see Tab	le B5.1.
	ar connection with inj	ection system FIS	S V Plus	Annex B 7
	regulations; Installation	instruction part 1, hc	le drilling	





4		Before use, make asure that the rebar or anchor FRA is dry and free of oil or other Mark the embedment depth I _v (e.g. with t Insert rebar in borehole, to verify drill hol depth I _v resp. I _{e,ges.}	⁻ residue. ape)
5		Twist off the sealing cap Twist on the static mixer (the spiral in the clearly visible).	e static mixer must b
6	Fischerez J	Place the cartridge into a suitable disper	iser.
7	X	Press out approximately 10 cm of mortal permanently grey in colour. Mortar which will not cure and must be disposed.	
Reba	r connection with injection system F	IS V Plus	

Minimum anc	horage	e ler	ngth and	minimu	m lap lei	ngth				
The minimum a be multiplied by								to EN 199:	2-1-1:2011	shall
Table C1.1:	Ampli	fica	tion facto	or α _ι rela	ted to co	ncrete sti	rength cla	ass and o	drilling me	ethod
Hammer drilling,	hollow	drill	ing and co	mpressed	d air drillin	g				
Rebar / fischer					Amplif	ication fac	ctor a _{lb}			
rebar anchor FR	A				Concre	ete strengtl	h class			
φ [mm]	C12	/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 25				1	,0			1	,1	1,2
28						1,0				
Table C1.2:	Bond metho		ciency fa	ctor k _b re	lated to c	concrete	strength	class and	d drilling	
Hammer drilling,	hollow	drill	ing and co	mpressed	d air drillin	g				
Rebar / fischer					Bond e	fficiency f	actor k _b			
rebar anchor FR	A				Concre	ete strengt	h class			
φ [mm]	C12	/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 25						1,00				
28				1,	00			0,91	0,84	0,84
fbd: Kb:	the rebailed by $\eta_1 =$ and rec	valu ar dia 0,7) omn	e of the bo ameter for nended par ncy factor	good bond	l condition $\gamma_c = 1,5$ acc	(for all othe cording to l	er bond co	nditions m	•	
Hammer drilling,	hollow	drilli	ing and co	mpressed	air drillin	g				
Rebar / fischer					Bond stre	ength f _{bd,Pl}	R [N/mm²]			
rebar anchor FR	A				Concre	ete strengt	h class			
φ [mm]	C12	/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 25	1,0	6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
28	1,0	5	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,7


fischer rebar ancho Characteristic tens Rebar diameter Characteristic tensile yield strength for reb Partial factor for reba ¹⁾ In absence of n	ile yield s			M12	M16	M20	M24
Rebar diameter Characteristic tensile vield strength for reb Partial factor for reba	9	Juengui					
vield strength for reb Partial factor for reba		φ	[mm]	12	16	20	25
	bar	fyk	[N/mm ²]	500	500	500	500
¹⁾ In absence of n	ar part	γ _{Ms,N} 1)	[-]		1,	15	
		eristic re	esistance t	to steel failu	ıre under tens	ion loading of	fischer
fischer rebar ancho	or FRA / F	RA HCF	2	M12	M16	M20	M24
Characteristic resis				tension loadin	ng		
Characteristic resista	ance	N	Rk,s [kN]	62	111	173	263
Partial factor							
Partial factor ¹⁾ In absence of n			s,N ¹⁾ [-]		1	,4	
Fischer rehar anche				-	re R30 to R12	1	ors FRA
fischer rebar ancho	or FRA / F			M12	M16	M20	M24
Characteristic	or FRA / F R30			M12 2,5	M16 4,7	M20 7,4	M24 10,6
Characteristic resistance to steel ailure under	R30 R60			M12 2,5 2,1	M16 4,7 3,9	M20 7,4 6,1	M24 10,6 8,8
Characteristic	or FRA / F R30 R60		2	M12 2,5	M16 4,7	M20 7,4	M24 10,6

bearing capacity $N_{Rk,s,fi}$ under fire exposure for fischer rebar anchor FRA

Z115424.22

8.06.01-139/22

